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Impact Plume: Solar wind @@PREAM

plasma/debris interaction

e LCROSS stimulated idea:
What would plasma
instruments detect?

e Comparative planetology

* |nvolves the field of ‘dusty
plasma’ research

e Dumping a large mass of dust
grains into the passing solar

? wind plasma

o e Statement of problem: How
does a flowing plasma
behave when dust ‘chunks’
are introduced?



The Enceladus Analog

Enceladus:

-lcy moon

-250 km radius

- 4 R, from Saturn
-South Polar Plume

South Pole
Geysers

Cassini
ISS images

Cassini Transits

Enceladus and E-ring

WREAM

Comparative Planetology

Look at other ‘chunky’
plasma systems

Enceladus plume may be
close analog

Nice thing about plume @
Enceladus: Steady State!

Spews ~ 100-200 kg/sec

Even forms the larger E-
rings

Many Cassini transits with
dusty plasma ‘gear’ — CAPS,
RPWS, CDA



Ejection Character
Release rate (kg/s)
Dust-to-Gas Mass Ratio
Gas density (m3)
Dust density (m-3)
Grains speed

Grain composition
Grain charge

Plasma Environment
Plasma Density (m3)
Plasma flow (km/sec)

Plasma T (eV)

Debye Length Ay (m)

Grain Interspacing L (m)

Comparison "REAM
R cessume——icnoss e mpectpame.

~100-200 kg/s, steady
> 0.1 (Gassy)

1013 *

>0.2 for micron sized *
> 200 m/s

Ice

Negative

Co-rotating magnetosphere
~108

30

3-5

2.5
<17 |L<A,

~300 kg/sec, over 10 sec
~10 (Chunky)

1015 * %

~1000 **

500 m/s

Regolith (some ice)
Negative (?)

Solar wind

5x 10°6

400

10

~20
0.1 |L<<A,

* = in situ observation region ~400 km from source; **= Over 10kmx10kmx20km volume



DGoertz: IDUIS'I:YFLA.ShlfIASINTHESOL‘ARISTSTEMOZ TWO Classes Of Dusty_
Plasma Interactions

lon Sheath

#1 : L > A :Grains electrically
isolated by sheath

— Pockets of trapped ions in dust
plasma sheath

— Grains disconnected by steep
potential

ep/ KT

#2 L < A4:Grains electrically
connected...both Moon and
Enceladus fit this case!

— Debye sheaths of each grain
overlap to form a ‘mega-sheath’

i — Plasma trapped in sheath can
) transport from grain to grain

N o] — Dust cloud behaves like an
electrically-connected ‘porous wall’

— Can form a regional structure

R Entire region
- behaves as a
collective

sheath

e¢/l:‘|'

b EE— I 15 X
Goertz, 1989, for (-) grains [ > ),



Example: DREAM PIC plasma
simulation code of two dust grains in a
plasma

I j Thermal ions —free!
05 + -
o
S . % ;
%‘ 1 = fg&\ lons trapped in grain sheath
] i T potential (vortex in v-x|space)

-0.5

+ 1

° 2ﬂ/ ;U[Debye Ire:lllr:_]tl'gﬁ:I \ o 100
Grain #1
Grain #2

-Negatively charged grains initially isolated/separated by 10 A s
- Have Grain #1 move past Grain #2 so that L< A,

-lons are crosses and dots to keep track of merging effects QREAM
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- Merging of sheaths and ion exchange!
-Create a merged sheath...temporarily!
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From Goertz 1989

ep/ kT

ep/ kT
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General collective dusty —plasma picture!

Going from
this!

To This:
Potential
has
dropped to
allow

ion flow
between
grains!



A Case Study: Cassini/Enceladus E3
passage

e How do we know there is dust around Enceladus?
e Cassini moving primarily southward at ~14 km/sec

* Dust detection via impact ionization that leaves a
bipolar pulse on RPWS antenna system

e Appears as a broad ‘spike’-like noise on radio
frequency vs time spectrogram

\ Cassini RPWS




Cassini/Enceladus E3 passage

Observations of Plasma

in Dust Cloud (surprise!):

1) Dust absorption of
electrons, like a sponge!

* n,/n,~ 30 (ion-rich)

e Entire region a big
‘sheath’ — mega-sheath

2) Plasma slows down

Dust has an electrical effect
on plasmall!

[Shafiq et al, 2010, Omidi et al., 2010, Farrell et al.,
2009, 2010; Tokar et al. 2009]



PREAM
Lunar Applications of the Enceladus
Analog

Since L << A, in both applications, might expect
similar collective dusty plasma behavior:

e Dust concentrations are large

e Plasma electrons ‘sucked’ out of fluid - absorbed
onto dust

* n/n,>>1

However, a complication occurs for a direct
application



Grain Charge State & Plasma Equilibrium

Q (t=0) = Qtribo

Farrell et al., 2008

Given a grain’s initial tribo-charge
state, it will come to equilibrium with
the plasma on a time scale of ©

— ¢, ~ 0.5 sec [Shafiq et al 2010]

— Tmoon — D0 sec

At Enceladus, grains come to
equilibrium very quickly

At Moon, longer equilibrium times

But LCROSS plume present for at least
4 min — did it reach equilibrium in last
few mins?

Analog gets more complicated!



Prediction for Flowing Solar Plasma at
a Lunar Impact

Grain Charge Location Character of Flowing Plasma . Like

State Enceladus
?

Equilibrium Just behind Electrons absorbed from plasma—-  >>1 Yes

negative terminator lon rich region

Equilibrium Dayside Electron concentrations increased  <<1 Converse

Positive to offset added positive grains — case

(photoelectrons) electron-rich plasma

Triboelectric Any Dust absorbs protons to get to <1

negative equilibrium — electron-rich plasma;

Early in plume lifetime

Triboelectric Any Dust absorbs electrons to get to >>1
positive equilibrium —ion-rich plasma;
Early in plume lifetime

For a real impact, plasma environment |
may have changed with time! Complicated plasma structure! g..,, REAM



WREAM

Is Enceladus plume an
analog to a lunar impact?

As we learn about Enceladus’ plume, it provides insight
on lunar impact/plasma interactions

Comparative planetology: Moon €=>Enceladus
Both cases: collective dusty plasma state (L<A,)

Conclude: System acts as a ‘porous wall’...a ‘mega-
sheath’

Conclude: Solar wind should be affected — but the
nature is dependent upon the charge state of the
grains

If grains are in equilibrium, the analog is stronger

System may start in a tribocharged state but evolve
towards equilibrium and the Enceladus model

Next time LCROSS2- in situ dusty plasma instruments



Backup slides



Grain Initial Charge

e Jones et al 2009 suggested
that the grains detected at
Cassini contain original tribo-
charged from jets source

 However, plasma equilibrium
timesin jetsare~ 0.3-3s
[Shafig et al 2010; Farrell et al
2010]

e Grains must be in equilibrium
w/ plasma by time they reach
Cassini

* Also consistent with plasma
electron absorption
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Grain Discharge to Equilibrium

-1 micron grain

-Grain initially tribocharged to +50V
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